バタフライ弁におけるキャビテーション 衝撃圧分布

岩崎正博*

Spatial Distributions of Cavitation-Induced Pressure Pulses Around a Butterfly Valve Masahiro Iwasaki

To make clear the mechanism of cavitation erosion in the typical bounded flow though butterfly valves, the spatial distribution of cavitation-induced shock pressures, which is directly related to the erosion, were precisely studied by using a technique of the so-called pressure sensitive films in the downstream region of the valve, where very erosive vortex cavitation take place predominantly.

It is found that the erosive shock pressure are distributed in a small limited part of the whole cavitating region, where the free shear layer separated from the valve plate develops at the orifice side.

1. 緒言

流体機械・機器の大形・高圧化あるいは信頼性 の向上の実現に関連して、キャビテーション壊食 の効果的抑制法および壊食の発生・発達過程の正 確な予測法の確立が要請されている。そのために は、壊食に直結するキャビテーション、特に、高 壊食性の渦形キャビテーションが発生する衝撃圧 をキャビテーションの様相を十分踏まえて議論す ることが必要となろう。

一般に、キャビテーションはそれぞれ独特の様相、発生領域を持つ様々なタイプのキャビテーション気泡^{1)~3)}により構成されており、それぞれの気泡が種々の大きさの衝撃圧を発するため、結果として、壊食には特定のタイプの気泡のみが係わってくることになる^{4)~7)}。更に、壊食が発生しても、

その壊食領域はごく狭い範囲に限定されている^{4),5),7)} から、上記の解明には、衝撃圧の空間分布⁴⁾(すな わち壊食性領域)および最大衝撃圧の発生状況を、 キャビテーションの様相との関連において調べる べきであろう。よって、前報^{8),9)}ではまずバタフラ イ弁まわりのキャビテーションの様相、壊食に深 く係わると思われた渦キャビテーションの発生領 域などを明示した。

本報では、引き続いてバタフライ弁まわりのキ ャビテーション衝撃圧分布、特に、実機で壊食を 認めた領域に発生する特異渦キャビテーション^{8),9)}

(以下渦泡という)の発生の様相と衝撃圧分布を、 代表的な弁開度、キャビテーション係数において 感圧フィルム法⁴⁾により測定・分析した。

図1 測定部および供試弁体 Fig. 1 Testsection and test butterfly valve

2.実験装置および方法

試験には回流式水槽を使用した。その測定部お よび供試弁体を図1に示す。装置の概要および測 定部に流入する流れの制御、試料水のキャビテー ション核分布などについては既報^{8),9)}を参照された い。

衝撃圧の測定には、広い範囲の衝撃圧分布の測 定が可能な感圧フィルム法を用いた。ポリプロピ レン製の袋(厚さ90 µm)に入れ、真空包装され たフィルム(160 mm×200 mm)は、円管内壁面 上の衝撃圧を測定する専用取付筒(外径150 mm、 長さ180 mm、厚さ1 mm)の内面に接着し、この 取付筒は測定部円管(直径D=150 mm)に挿入・ 固定した(図2参照)。また、感圧フィルム(今回 の測定圧範囲2.5~10 MPa)をキャビテーション にさらした時間は、衝撃圧分布がほぼ定常状態に 落ち着く20分間とした。衝撃圧値は、専用の濃度 計(直径2 mmの円内の平均値を指示)により分析 した。

弁体まわりの流れパターンは、主流の流速 U₁と 弁開度 α_v により大幅に変化するが、今回はまず特 異渦キャビテーションが顕著に発生する弁開度 α_v = 40 deg を取り上げ、初生付近からほぼチョーキン

図2 感圧フィルムの固定位置

Fig. 2 Fixed position of pressure sensitive film

グ開始状態^{8),9)}までについて測定した。キャビテー ションの様相は、上方、側方の2方向から、せん 光時間1μsのクセノンランプを用いて同時撮影す ることより立体的に観察している。

試験範囲は、キャビテーション係数 $\sigma = (P_2 - P_v)$ / $(P_1 - P_2) = 0.99 \sim 2.70$, レイノルズ数 Re = U₁ D / $\nu = (5.16 \sim 7.07) \times 10^5$ 、試料水の空気含有 度 $\alpha / \alpha_s \approx 1.1$ 、水温 tw = 292 ~ 294 K である。 P₁、 P₂、P_vおよび ν は弁体の上流 2 D、下流 8 Dの静 圧、試料水の飽和蒸気圧および動粘度である。

さび周辺領域に、高衝撃圧の存在を示す渦泡によ

るとみられる多数の高衝撃圧の発生を示す斑点を

認める。すなわち、渦泡の発生領域はオリフィス

噴流の内でも最も強いせん断流れ場であるくさび

周辺領域に限定されている。そして、これらの渦

泡は管壁に立つ形に渦軸を持っていることがわか

る。この斑点の数とその発生領域はσの低下とと

もに増大し、もちろんその衝撃圧値も増大する。

3.実験結果および考察

図3には、感圧フィルムにより得られた感圧模 様、衝撃圧 P_{sc} 分布 (いずれも図2の θ 方向への展 開図)およびキャビテーションの瞬間写真を、種々 の σ について示す。まず感圧模様をみると、通称 オリフィス側の弁体前縁からはく離した流れが通 称ノズル側へ勢いよく流れ込むオリフィス噴流^{8),9)} によって特徴付けられる激しいじょう乱を伴うく

deg deg ngle 8 Angle 8 15 0.5 0 0.5 -135 -135 45 deg Φ 1.5 0.5 15 0.5 amwise distance om the valve plate Angle Stream reamwise distance from the valve plate ×/D -135 -135 Flow Flow Top v. Top v. Side v Side v.

 $(a)\sigma = 2.70$

(b)σ=1.55

図3 感圧模様、衝撃圧分布およびキャビテーションの様相

Fig. 3 Pressure-pulse-maps on the pressure sensitive films, spatial distributions of the pressure pulses P_{sc} and cavitation aspects around the butterfly valve

このことは、 σ の低下に伴う渦泡の大きさ(渦軸 方向の長さ、太さ)の増大と、その発生領域の増 大に良く符号している。

なお、渦泡の成長は、オリフィス側の弁体前縁 におけるキャビテーションの発生⁷⁾が莫大な数の微 細気泡核を下流へ供給するために、その核が渦に 取り込まれる形で成長していると言える。そして、 相対的に高衝撃圧の渦泡は一つの気泡より成るフ ォロー形ではなく渦内に多数の気泡が集まってい るクラウド状のものであることもわかった。

図 3 (C) σ = 0.99

4. 結 言

バタフライ弁まわりに発生するキャビテーショ ン、特に、特異渦キャビテーションが発する衝撃 圧を、実際に壊食を認めたオリフィス側の管内壁 面上において、弁開度一定のもとに感圧フィルム により測定した。その結果、特異渦キャビテーシ ョンは確かに高衝撃性であり、その発生領域はオ リフィス噴流中でも激しいじょう乱を形成するく さび周辺領域のみに限定されていることなどを明 らかにした。

終わりに臨み、本研究に対して御指導いただき ました東北大学流体科学研究所大場利三郎先生と 伊藤幸雄先生に感謝の意を表します。

文献:

- Holl, J.W. and Caroll, J.A., Trans. ASME, J. Fluids Eng., 103-3 (1981), 415.
- 2) 大場・伊藤、日本機械学会論文集、45-398、 B(1979)、1428.
- 伊藤・ほか3名、日本機械学会論文集、54-500、 B(1988)、763.
- 大場・ほか7名、日本機械学会論文集、53-487、 B(1987)、671.
- 5) Selim, S.M.A. and Hutton, S.P., 2 nd Int. Conf. on Cavi., I. Mech. E., Edinburgh,(1983), 41.
- 6) Ito, Y., ほか 6名, Proc. Int. Symp. on Scale Modeling, (1988-7), 141.
- 7) 大場・ほか5名、ターボ機械、15-12、(1987)、 17.
- 8) 伊藤・ほか5名、日本機械学会論文集、54-508、 B(1988)、3317.
- 9) 岩崎、栗本技報、No.21、(1989)、78.

執筆者

岩 崎 正 博 Masahiro Iwasaki 昭和52年入社 バルブ等の流体機器の設計に従事

